Weighted Boundedness of Certain Sublinear Operators in Generalized Morrey Spaces on Quasi-Metric Measure Spaces Under the Growth Condition

نویسندگان

چکیده

Abstract We prove weighted boundedness of Calderón–Zygmund and maximal singular operators in generalized Morrey spaces on quasi-metric measure spaces, general non-homogeneous, only under the growth condition measure, for a certain class weights. Weights characteristic are independent each other. Weighted operator is also proved case when lower upper Ahlfors exponents coincide with Our approach based two important steps. The first transference theorem, where without use homogeneity space, we provide which insures that every sublinear size condition, bounded Lebesgue space. second reduction theorem reduces considered to Hardy non-weighted some special operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness criteria for commutators of some sublinear operators in weighted Morrey spaces

In this paper, we obtain bounded criteria on certain weighted Morrey spaces for the commutators generalized by some sublinear integral operators and weighted Lipschitz functions. We also present bounded criteria for commutators generalized by such sublinear integral operators and weighted BMO function on the weighted Morrey spaces. As applications, our results yield the same bounded criteria fo...

متن کامل

Fractional Integral Operators in Generalized Morrey Spaces Defined on Metric Measure Spaces

We derive some necessary and sufficient conditions for the boundedness of fractional integral operators in generalized Morrey spaces defined on metric measure spaces. îâäæñéâ. áŽéðçæùâIJñèæŽ äëéæŽê éâðîæçñè ïæãîùââIJäâ àŽêïŽäôãîñèæ àŽêäëàŽáëâIJñè ûæèŽáñîæ æêðâàîŽèñîæ ëìâîŽðëîæï öâéëïŽäôãîñèëIJæï ŽñùæèâIJâèæ áŽ ïŽçéŽîæïæ ìæîëIJâIJæ.

متن کامل

Weighted Anisotropic Product Hardy Spaces and Boundedness of Sublinear Operators

Let A1 and A2 be expansive dilations, respectively, on R n and R. Let ~ A ≡ (A1, A2) and Ap( ~ A) be the class of product Muckenhoupt weights on R × R for p ∈ (1, ∞]. When p ∈ (1, ∞) and w ∈ Ap( ~ A), the authors characterize the weighted Lebesgue space L w (R × R) via the anisotropic Lusin-area function associated with ~ A. When p ∈ (0, 1], w ∈ A∞( ~ A), the authors introduce the weighted anis...

متن کامل

Localized Morrey-Campanato Spaces on Metric Measure Spaces and Applications to Schrödinger Operators

Let X be a space of homogeneous type in the sense of Coifman and Weiss and D a collection of balls in X . The authors introduce the localized atomic Hardy space H q D (X ) with p ∈ (0, 1] and q ∈ [1,∞] ∩ (p,∞], the localized Morrey-Campanato space E p D (X ) and the localized Morrey-Campanato-BLO space Ẽ p D (X ) with α ∈ R and p ∈ (0,∞) and establish their basic properties including H q D (X )...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2022

ISSN: ['1531-5851', '1069-5869']

DOI: https://doi.org/10.1007/s00041-022-09924-8